MAP Flight Software Development Plan

MAP

Flight Software Development Plan

10/17/96

Prepared By:

__

Bruce J. Savadkin Date

MAP Flight Software Lead Engineer

NASA/GSFC Code 735

Approvals:

__

Raymond Whitley Date

Flight Software Systems Group Lead

NASA/GSFC Code 735

__

Dennis Andrucyk Date

Flight Data Systems Branch Head

NASA/GSFC Code 735

__

Elizabeth Citrin Date

MAP Mission System Engineer

NASA/GSFC Code 704

__

Richard Day Date

MAP Mission Manager

NASA/GSFC Code 701.2

1.0 Introduction
5

1.1 Purpose and Scope
5

2.0 Software Overview
5

2.1 MAC (MIDEX ACS and C&DH) Mongoose V Processor
5

2.2 MAC Mongoose V Application Software
6

2.2.1 Mongoose Operating System Software
6

2.2.2 1773 Bus Controller Software
7

2.2.3 Software Bus
7

2.2.4 Command Ingest
7

2.2.5 Telemetry Output
8

2.2.6 Stored Command Processor
8

2.2.7 Attitude & Control Software
8

2.2.7.1 Reusable ACS Components
8

2.2.7.2 Attitude Control Electronics(ACE) Interface
8

2.2.7.3 Attitude Control
9

2.2.7.4 Attitude Determination
9

2.2.7.5 Command and Telemetry
9

2.2.7.6 Orbit Determination
9

2.2.7.7 Fault Detection and Correction
9

2.2.8 Time Code Software
9

2.2.9 Memory Scrub
10

2.2.10 Software Manager
10

2.2.11 Checksum Software
10

2.2.12 Telemetry & Statistics Monitoring
10

2.2.13 Health & Safety Software
10

2.2.14 Instrument Support Software
11

2.2.15 Data Storage Software
11

2.2.16 Memory Dwell Software
11

2.3 RSN Application Software
11

2.3.1 RSN Operating System (ROS)
11

2.3.2 Transponder RSN Specific Software
12

2.3.3 PSE RSN Specific Software
12

2.3.4 ACE RSN Specific Software
12

2.3.5 Housekeeping RSN Specific Software
13

2.3.6 Instrument RSN Specific Software
13

3.0 Resources
13

3.1 Team Organization
13

3.3 Flight Software Lab Facility
14

3.3.1 Hardware Receivables
16

3.3.2 XTE Equipment
17

3.3.3 New Equipment
17

3.3.4 Lab Space Requirements
17

4.0 Flight Software Builds
18

4.1 Testbed Build Phase I (3/96)
19

4.2 C&DH Flight Software Builds
19

4.2.1 C&DH Flight Software Build I (6/97)
19

4.2.2 C&DH Flight Software Build II (11/97)
20

4.2.3 C&DH Flight Software Build III (4/98)
20

4.3 ACS Flight Software Builds
21

4.3.1 ACS Flight Software Build I (4/97)
21

4.3.2 ACS Flight Software Build II (2/98)
21

4.3.3 ACS Flight Software Build III (7/98)
21

4.4 ACE Flight Software Builds
22

4.4.1 ACE Flight Software Build I (3/97)
22

4.4.2 ACE Flight Software Build II (7/97)
22

5.0 Flight Software Development Philosophy
22

5.1 Testing
22

5.2 Reviews
23

5.3 Coding Standards and Conventions
23

5.4 Configuration Management (CM)
23

5.5 Documentation
24

1.0 Introduction

A single team of Flight Software Developers will be assembled in order to develop, integrate, test, and maintain the MAP Flight Software load. Team members will include both civil servant and contractor personnel. The civil servant team members will be comprised of Code 512, 712, and 735 Software Engineers. The Flight Software Development Lab will be located in building 11 room E138. Much of the software required for MAP has significant heritage from the XTE Flight Software. In order to reduce costs, and schedule every effort will be taken to take advantage of this heritage. Where appropriate software subsystems will be ported to the MAP Data System with only minor changes.

1.1 Purpose and Scope

The MAP Flight Software Development Plan is intended to be a comprehensive overview of the resources, schedule, deliverables, and receivables required for the entire flight software load for the MAP Spacecraft. This plan will cover the flight software for the following Spacecraft computers:

- MAC (MIDEX ACS and C&DH) Mongoose Processor

- Transponder RSN Processor

- ACE RSN Processor

- PSE RSN Processor

- Housekeeping RSN Processor

- Instrument RSN Processor

2.0 Software Overview

The MAP Flight Software will be distributed among one R3000 based Mongoose V Microprocessor, and five UT69R000 RSN (Remote Services Node) Microprocessors. Figure 1.0 shows a software representation of the MAP architecture. Flight Software applications for the Mongoose V and the RSN processors will be developed using the “C” Programming language.

2.1 MAC (MIDEX ACS and C&DH) Mongoose V Processor

The MAC Processor will be the bus controller on the S/C 1773 bus. It will house the following software elements:

1) Tornado Operating System

2) 1773 Bus Controller

3) Software Bus

4) Command Ingest

5) Telemetry Output

6) Stored Command Processor

7) Attitude & Control

8) Time Code

9) Memory Scrub

10) Software Manager

11) Checksum

12) Telemetry & Statistics Monitor

13) Health & Safety

14) Instrument Support

15) Data Storage

Figure 1.0
2.2 MAC Mongoose V Application Software

For all of the flight software components described below, the assigned engineer is responsible for requirements analysis, design, code, unit test, and documentation.

2.2.1 Mongoose Operating System Software

WindRiver Systems Corporation’s Tornado (formerly VxWorks) is a commercially available product which provides the real-time processing environment for the MAC software. In addition, several custom Operating system software components must be developed:

1. Processor and peripheral hardware initialization

2. Processor exceptions

3. Processor interrupts

4. Processor mode transitions and logging

Alan Cudmore of Code 735 shall be responsible for the Mongoose Operating System Software.

2.2.2 1773 Bus Controller Software

The 1773 Bus Controller Software consists of a Tornado task and several Interrupt Service Routines (ISR’s). The BC schedules and performs all 1773 serial communications on the Spacecraft Bus. All I/O operations are mapped onto a set of time division multiplexed (TDM) control tables to effect a synchronous command and data acquisition scheme. The hardware architecture supports a second BC on the MAC processor, however, there currently is no requirement for this bus. The BC is primarily a port from the XTE/TRMM version. The control tables must be populated to support MAP specific requirements. Jacob Firer of DSC will be responsible for the 1773 Bus Controller software and control tables.

2.2.3 Software Bus

The Software Bus is a layer of software that augments the Tornado operating system. It includes a task and a library of functions which provide inter-process communication of CCSDS packetized messages. A major objective of the SB is to shield application tasks from the operating system and hence improve portability. Another objective is to provide a central repository for telemetry and commands which require buffering. The operation of the Software Bus is completely table driven. The tables can be setup to have any packet routed to any destination. The control tables must be populated to support MAP specific requirements. The SB is a port from the XTE/TRMM version. Bruce Savadkin of 735 will be responsible for the Software Bus code and control tables.

2.2.4 Command Ingest

The Command Ingest software reconstructs CCSDS transfer frames from code blocks received over the 1773 bus from the Transponder RSN and implements COP1 protocol for command reception verification. CCSDS command packets are then extracted from the transfer frames and distributed via the Software Bus to their required destination. Much of Command Ingest will be ported from the XTE/TRMM version. Software that supported multiple uplinks will be removed for MAP. Alan Cudmore of 735 shall be responsible for the Command Ingest software.

2.2.5 Telemetry Output

The Telemetry Output (TO) Software manages the flow of data from the spacecraft. TO receives data packets from the Software Bus, formats the data into CCSDS Virtual Channel Data Units (VCDU’s), and outputs real-time data to the Transponder RSN via the high-speed serial line or the low-speed 1773 bus interface. Todd Miller of 735 will be responsible for the Telemetry Output software.

2.2.6 Stored Command Processor

The Stored Command Processor (SCP) provides autonomous commanding capabilities for the Spacecraft. The SCP supports 24 hours of autonomous operations using sequences of commands that are loaded from the ground. The simultaneous execution of Absolute Time, and multiple Relative Time tagged command sequences are supported. The SCP is primarily a non-modified port of the XTE/TRMM Stored Command Processor. Alan Cudmore of 735 will be responsible for the Stored Command Processor.

2.2.7 Attitude & Control Software

The MAC Processor will contain one or more Tornado tasks responsible for controlling the attitude of the spacecraft. The ACS will receive ACE sensor data via the 1773 bus and respond with actuator commands. All interfaces to ACE components will be via the Software Bus. Mark Walters of 735 will lead the MAP ACS flight software team.

2.2.7.1 Reusable ACS Components

Following XTE’s launch an effort has been in progress to repackage, document, and test several XTE ACS components to start a reusable flight software library. The math libraries (matrix, vector, and quaternion support functions), the solar model, and the attitude (quaternion management) module are available for immediate use on MAP. If a Kalman filter is required by MAP it will be designed as a reusable component. Dave McComas of 512 will be responsible for the reusable ACS software components.

2.2.7.2 Attitude Control Electronics(ACE) Interface

The ACE provides the interface to the following ACS hardware components: IRU, CSS, DSS, RWA, and EVD. The ACS software must perform sensor data processing on all data received from the ACE. Typically this requires transforming the data from raw sensor counts in a sensor’s coordinate frame to engineering units in the spacecraft’s body frame. Commands sent to the ACS components managed by the ACE must also be properly formatted. Dan Berry of 512 will be responsible for the ACE interface software.

2.2.7.3 Attitude Control

The ACS software is built using a control mode concept. Each control mode defines a control law algorithm for controlling the spacecraft attitude, how each sensor and actuator will be used, and what attitude knowledge is required. The performance of each mode and the transitions between modes must be managed by the flight software. Ariel Leibowitz of code 512 will be responsible for the control mode software.

2.2.7.4 Attitude Determination

The ACS software must maintain the spacecraft attitude. This involves representing the attitude as a quaternion, propagating the estimate quaternion, and maintaining a target quaternion with velocity aberration for pointing control modes. MAP will require a Kalman Filter using star tracker data to provide updates to the estimate quaternion and the IRU drift bias. Dave McComas of code 512 will be responsible for the attitude determination software.

2.2.7.5 Command and Telemetry

The ACS software has a rich set of commands for managing the onboard attitude and managing and configuring the attitude control. The ACS generates large amounts of data due to its complex computations. Mark Walters of code 735 will be responsible for the ACS command distribution software and the ACS telemetry packet creation software.

2.2.7.6 Orbit Determination

MAP will need to know its L2 orbit position and possibly its velocity. Mark Walters of code 735 will be responsible for the orbit determination software.

2.2.7.7 Fault Detection and Correction

The ACS will provide fault detection for all ACS hardware components and control mode performance. Fault correction will be limited due to the single string MAP architecture. The intention is to implement fault correction using Telemetry & Statistics Monitoring and the Stored Command Processor. Dave McComas of code 512 will be responsible for coordinating the fault detection and fault correction implementations.

2.2.8 Time Code Software

The Time Code (TC) task handles all the onboard time services for the Data System. It is responsible for making time available to all onboard tasks, S/C subsystems and instruments. In addition, TC collects spacecraft to ground time correlation data and correlates onboard time. Art Ferrer of 735 will be responsible for the Time Code Software resident in the MAC Processor. The TC Software requirements are but a subset of those associated with XTE and TRMM. Because of the significant hardware differences, TC will be treated as a completely new design and implementation effort.

2.2.9 Memory Scrub

The Memory Scrub (MS) software provides software “scrubbing” of the Dynamic RAM to enable the EDAC hardware to correct single bit-flips in memory. Scrubbing is performed by reading a word and then immediately writing the word back to the same location. Steve Slegel of DSC will be responsible for the Memory Scrub software.

2.2.10 Software Manager

The Software Manager (SM) provides memory and table load and dump services to allow the ground to reconfigure the flight software. Art Ferrer of 735 will be responsible for the Software Manager.

2.2.11 Checksum Software

The Checksum Software (CS) periodically re-calculates memory checksum data for key DRAM and EEPROM memory areas. The newly computed checksums are compared to pre-determined expected checksums. Discrepancies are autonomously reported in telemetry. Bruce Savadkin of 735 will be responsible for the Checksum software.

2.2.12 Telemetry & Statistics Monitoring

The Telemetry & Statistics Monitoring (TSM) software provides the capability to monitor table specified telemetry points. It maintains statistics on these points and performs threshold limit checking. When used in conjunction with the stored command processor, emergency relative time sequences can be activated when limit failures occur. Much of Telemetry & Statistics Monitoring software will be ported from the XTE/TRMM version. Steve Slegel of DSC will be responsible for the Telemetry and Statistics Monitoring software.

2.2.13 Health & Safety Software

The Health & Safety (HS) Software monitors all onboard applications for proper execution and triggers warm or cold software restarts when anomalies are detected. It’s also responsible for interfacing with the hardware watchdog circuitry. Bruce Savadkin of 735 will be responsible for the Health & Safety software.

2.2.14 Instrument Support Software

The Instrument Support (IS) Software is responsible for any telemetry or command processing required for the MAP Instrument. It will format and forward telemetry to Data Storage for recording. Carlos Trujillo of 738 will be responsible for the Instrument Support Software.

2.2.15 Data Storage Software

The Data Storage (DS) software manages the Data Systems solid state bulk memory. DS will support simultaneous acquisition, recording, and playback of data at all mission rates. Separate “virtual” recorders will be implemented for instrument and spacecraft housekeeping data sources. DS will interface with Telemetry Output software to downlink recorded telemetry. Much of Data Storage will be ported from the XTE/TRMM version. Steve Slegel of DSC will be responsible for the Data Storage Software.

2.2.16 Memory Dwell Software

The Memory Dwell (MD) software is a diagnostic tool capable of monitoring MAC processor memory locations. It can build and downlink telemetry packets which are reconfigurable via table loads. This tool can also be used to downlink additional housekeeping telemetry that doesn’t conveniently fit into the Spacecraft Housekeeping Telemetry data stream. Bruce Savadkin of 735 will be responsible for the Memory Dwell Software.

2.3 RSN Application Software

2.3.1 RSN Operating System (ROS)

Although each RSN in the architecture possesses unique functions and requirements, they share a core set of software. The RSN Operating System (ROS) was developed by John Allen of Dadaelian Systems Corporation (DSC). It contains the following capabilities:

1. Pre-emptive multitasking

2. Message passing through queues

3. Dynamic inter-task communication of CCSDS packets through plugs

4. UART debugging services

5. Memory management

6. Timer services

7. Watchdog services

8. Time distribution and correlation with Spacecraft time

9. 1773 Remote terminal software

The following additional generic software functions will be added to support health & safety and flight software maintenance:

1. Health & Safety code which will assess RSN health and service the watchdog timer.

2. Memory load and dump software for flight software maintenance and debug.

3. Warm & cold processor mode transitions

4. Event message formatting software

Each RSN in the MAP architecture will possess unique requirements which dictate the need for custom software. However, the ROS will provide the foundation for all RSN applications.

2.3.2 Transponder RSN Specific Software

The Transponder RSN Specific Software will include uplink software to read codeblocks from the Transponder RSN FIFO, and format them into codeblock packets to be forwarded to the 1773 Remote Terminal software. Downlink software will receive packetized transfer frames from the 1773 bus controller and load them into the low rate telemetry FIFO. Todd Miller of 735 will be responsible for the Transponder RSN software.

2.3.3 PSE RSN Specific Software

The PSE RSN Specific software includes the following capabilities:

1. Battery state of charge calculations

2. Control battery charging and solar array output

3. Detect low power condition and power off non-essential services

Scott Gleason of Litton will be responsible for the PSE RSN software.

2.3.4 ACE RSN Specific Software

The ACE RSN specific software includes the following capabilities:

1. Acquire ACE hardware data (core RSN S/W should provide this capability)

2. Execute Safehold algorithm

3. Manage ACE Actuator commanding (core RSN S/W should provide this capability)

Dave Leucht of 712.1 will be responsible for the ACE RSN software.

2.3.5 Housekeeping RSN Specific Software

As of this date there are no specific requirements for the Housekeeping RSN. TBD of TBD will be responsible for the Housekeeping RSN software.

2.3.6 Instrument RSN Specific Software

Instrument RSN Specific software is TBD at this time. Carlos Trujillo of 738 will be responsible for the Instrument RSN software.

3.0 Resources

3.1 Team Organization

The MAP Flight Software Development Team consists of both civil servant and contractor personnel. Figure 2.0 represents the organization of the flight software development team. Listed under each team members name is a list of flight software responsibilities that are assigned to that person. It is worth noting that the Flight Software, ACS Software, and C&DH Software Lead Engineers will also be responsible for developing significant portions of the MAP Flight Software.

Figure 2.0
3.3 Flight Software Lab Facility

The MAP Flight Software Lab will contain 2 independent strings of the Spacecraft data system hardware. Each string will have the capability to be used as a fully functioning platform for build testing or software development. Every effort will be taken to maintain independence between the 2 strings. Dual strings will provide the flexibility to do any combination of flight software development and build testing in parallel. For example, String 1 could be used for ACE testing and string 2 could be used for ACS build testing provided that both strings contain the necessary ACS hardware. This flexibility is crucial considering the accelerated schedule of the flight software deliveries. Figure 2.1 illustrates the required equipment for a single fully populated string of the MAP Flight Software Facility

MAP Flight Software Development Facility (String #1)

Figure 2.1

3.3.1 Hardware Receivables

This section describes the hardware to be delivered to the MAP Flight Software Facility from other MAP subsystems. These subsystems include C&DH, ACS, PSE and GSE. Since it would be prohibitively expensive to duplicate every item in the Software Development Lab, some compromises have been made to minimize costs. In particular the PSE, Instrument and S/C RSN’s can be simulated if necessary on string 2. Table 2.0 describes the hardware to be delivered to the MAP Flight Software Development facility. In addition to the listed hardware, all necessary harnessing, power supplies, card cages and racks will also be required.

Deliverables to MAP Flight Software Facility

Item
Quantity
Delivered By
Need Date

String 1
Need Date String2
Comment

Mongoose V Breadboard
2
MAP C&DH
8/96
9/96
These breadboards will be used for the entire flight software lifecycle

RSN Development Boards
3
MAP C&DH
12/95
N/A
These boards have been delivered.

Transponder RSN Breadboard
2
MAP C&DH
5/96
12/96
2nd Board needed for String#2

Instrument RSN Breadboard
1
MAP C&DH
6/97
N/A
This is only required if Instrument needs functions not provided by the development board.

PSE RSN Breadboard
1
MAP PSE
5/96
N/A
Required to develop the PSE specific RSN S/W

ACE RSN Breadboard or ETU
2
MAP ACS
2/96
3/97
Current plan provides ETU for 2nd delivery

ACS CAMAC
1
MAP ACS
2/96
N/A
Used on temporary basis until VXI rack is available

ACS VXI Rack
2
MAP ACS
11/96
3/97

ACS HDS
2
MAP ACS
11/96
3/97

ASIST FEDS
2
MAP GSE
6/96
12/96
Only single channel capability required

ASIST Workstations
4
MAP GSE
6/96
12/96
2 ASIST workstations per string are required.

Table 2.0

3.3.2 XTE Equipment

The launch of XTE provides some equipment which can be used to support the development of the MAP Flight Software. The spacecraft architecture differences between XTE and MAP will limit the usefulness of much of the XTE residuals, however. Table 2.1 lists the XTE flight software equipment which will be re-used in the MAP lab.

 XTE Equipment to be Re-used for MAP

Item
Quantity
Description

486 PC’s
6
Most 486 computers will be used as 1773 bus monitors and simulators.

Lab Benches
6
All lab benches from the XTE C&DH S/W development facility will be used for MAP

Lab Chairs
8

1553/1773 Converter Box
3
These allow the 1553 based RT simulators and monitors to be used on the 1773 bus.

RT Simulators
3
1553 based simulators will be used in conjunction with 1553/1773 converter boxes to assist in simulating RT’s on the bus.

RT Monitors
2
1553 based monitors will be used in conjunction with the 1553/1773 converter boxes to monitor 1773 bus activity.

1773 Bus Monitor
1
This will be used to connect directly to the 1773 bus for bus monitoring and simulations.

286/386 PC’s
4
Most 286 & 386 computers will be used to connect to the UART output of the Mongoose and ESN boards. They will be configured to run Kermit for output logging.

Table 2.1

3.3.3 New Equipment

Because of the advanced age of the XTE residual equipment, and the architecture differences between XTE and MAP some new equipment will be required. Table 2.2 lists the equipment that is required for the MAP Flight Software effort.

3.3.4 Lab Space Requirements

A single flight software lab with 2 strings provides efficiency gains in the areas of equipment and manpower. It is estimated that this facility will require approximately 1000 square feet. Figure 2.2 shows the MAP Flight Software Development Facility in Building 11 Room E138.

Figure 2.2
4.0 Flight Software Builds

The MAP Flight Software deliverables are divided into software releases. Each successive release builds upon the previous one in that it contains significant new functionality. Smaller intermediate releases of the flight software may be necessary in order to fix problems or to add functionality that may be needed to support testing. Because of the interdependencies between C&DH, ACS, and ACE flight software it is more efficient to separate their builds for the purpose of configuration management and deliveries. There will be 3 C&DH, 3 ACS, and 2 ACE flight software releases.

4.1 Testbed Build Phase I (3/96)

To support the MIDEX goal of demonstrating new technology prior to mission selection it is necessary to develop a software build capable of providing:

Mongoose I Processor

1. Nucleus Operating System and extensions

2. 1773 Bus Controller Software

3. Software Bus

4. Command Ingest

5. Telemetry Output

ACE RSN
1. DSC’s RSN Operating System

2. ‘C’ Command & Telemetry Software

3. ‘C’ Data Acquisition

PSE RSN
1. DSC’s RSN Operating System & Logic Analyzer

2. Logic Analyzer implementation of PSE telemetry & commands

The testbed effort is important because it provides early insight into future software development problems. However, it is important to note that the accelerated development of many software components will cause important software development lifecycle steps to be skipped. These steps will have to be revisited in later builds to assure that the flight software is being developed properly. In a few cases, software was developed to specifically support the testbed and will be of little or no further use.

4.2 C&DH Flight Software Builds

4.2.1 C&DH Flight Software Build I (6/97)

The primary purpose of this build is to develop software that specifically has a C&DH hardware interface. Since the decision to build ETU hardware is being made very early in the schedule it is important to exercise as much of the hardware interfaces as possible.

RSN Software

1. Generic Bootstrap Loader, ROM Monitor

2. RSN Operating System

3. RSN Generic Utilities

4. RSN Generic Applications

5. Transponder UL/DL Application

6. PSE Closed-Loop Software

Mongoose V Software
1. Bootstrap Loader & Initialization

2. Software Bus Routing Tables based on MAP ICD’s

3. Bus Controller Schedule based on MAP ICD’s

4. Telemetry Output

5. Health & Safety

6. Software Manager

7. Time Code

8. Memory Scrub

9. Checksum

4.2.2 C&DH Flight Software Build II (11/97)

Build II will focus primarily on the remaining software tasks which generally do not have hardware interfaces. They interface to the Software Bus and therefore are planned for implementation in Build II.

Mongoose V Software

1. Mongoose V Mode Transition Software

2. Data Storage

3. Command Ingest (cleanup from testbed)

4. Stored Command Processor

5. Telemetry & Statistics Monitor (no preloaded monitors)

4.2.3 C&DH Flight Software Build III (4/98)

Build III is intended provide all the MAP mission specific software components. These include MAP specific Relative Time Sequences, Telemetry & Statistics Monitoring, and any data processing software required for the MAP instrument.

Mongoose V Software

1. MAP Relative Time Sequences

2. MAP Telemetry & Statistic Monitoring Algorithms

3. MAP Instrument Support Software

RSN Software
1. Housekeeping RSN I/O Configuration

2. Instrument RSN Software Integration

4.3 ACS Flight Software Builds

4.3.1 ACS Flight Software Build I (4/97)

Build 1 provides an end-to-end ACS data flow capability. The ACS software has strict deterministic and throughput timing requirements. Build 1 allows validation of both the ACS test equipment and the ACS architecture with respect to the timing requirements.

Mongoose V

1. ACS architecture (High level task implementations with minimal command & telemetry)

2. Solar Model

3. Quaternion propagation if IRU hardware specification is available.

4.3.2 ACS Flight Software Build II (2/98)

Build 2 fully implements attitude determination and partially implements attitude control. Only Inertial Hold and the Compound Spin (science) control modes are implemented. The control mode transition structure will be in place. This build allows the test team to validate the science mode operations. All ACE sensor data processing and actuator interface software must be complete.

Mongoose V

1. All ACE sensor data processing (IRU, CSS, DSS, RWA, EVD).

2. Attitude Determination (Star Tracker data processing and Kalman Filter)

3. Inertial and Science Modes

4. Orbit Determination

4.3.3 ACS Flight Software Build III (7/98)

Build 3 completes the ACS software. The non-science control modes (sun acquisition, momentum unloading, and orbit adjust modes) are implemented. Attitude initialization and TRIAD (if applicable) are implemented. Command and Telemetry are finalized. All fault correction logic is in place.

Mongoose V

1. Sun acquisition, Delta-V, and Delta-H control modes.

2. Attitude initialization and TRIAD.

3. Command and telemetry finalized.

4.4 ACE Flight Software Builds

4.4.1 ACE Flight Software Build I (3/97)

The ACE Flight Software Build I will be developed primarily to provide command and telemetry interfaces to the ACS software running in the MAC processor.

ACE RSN

1. Sensor and housekeeping data acquisition

2. Preliminary command & telemetry

3. Thruster interface control

4. Safehold stub (to provide actuator command output)

4.4.2 ACE Flight Software Build II (7/97)

ACE RSN

1. Sensor data processing and validation

2. Safehold algorithm

3. Safehold monitor capability

4. Complete command & telemetry

5.0 Flight Software Development Philosophy

5.1 Testing

The MAP Flight Software will be tested in 2 phases. A build test will be performed following the release of most flight software builds. A build test is considered to be biased in the sense that the build test team works closely with the flight software development team to create the test plan and procedures. The MAP Flight Software will not be independently verified. Acceptance testing is the second phase of flight software testing. Unlike build tests which will be completed following a particular software release, acceptance testing will be done as the last verification of the software prior to Spacecraft I&T. Acceptance testing will be done by the same personnel responsible for the build testing. The acceptance test procedures will be comprised of build test procedures and additional tests required to simulate mission scenarios. Special care will be taken during build test procedure development to maximize re-use of build tests during the Acceptance Testing phase.

Build test reviews will be held to assure that the test procedures are sufficiently testing the subsystem requirements and that the procedures are being written to maximize future re-use for Acceptance Testing. Testing is described in the MAP Flight Software Test Plan.
5.2 Reviews

In general, the number of reviews required for the development and testing of the MAP Flight Software will be kept to a minimum. Software subsystems or tests which are heavily re-used from previous missions will be subject to fewer reviews. Software subsystems which are newly designed for MAP will be subject to the full review process. The full review process includes the following reviews:

· Flight Software Subsystem Requirements Review (per s/w subsystem)
· Flight Software Subsystem Design Review (per s/w subsystem)
· Flight Software Subsystem Code Review (per s/w subsystem)

· MAP Flight Software Preliminary Design Review (per mission)

· MAP Flight Software Critical Design Review (per mission)

· Build Test Review (per build)

· Acceptance Test Review (per mission)

5.3 Coding Standards and Conventions

Coding standards are often thought of as a nuisance and a restriction by many programmers. The exact opposite is actually the case. Standards relieve the programmer from wasting time on the mundane parts of coding allowing the programmer to focus on design issues. In a team environment standards provide uniformity in programming style which aide in communication. Standards provide a legend into everyone’s code so anytime one needs to discuss his/her code with another team member no time is wasted on getting oriented. Code reviews can focus on what the code is doing. Coding standards make the code easier to read and understand, and ultimately to maintain.

The MAP flight software coding standards are described in the MAP Flight Software Development and Coding Standards Document. Since many software subsystems are being ported from previous missions it may not be possible to enforce these standards across the board. However, these standards will be applied to any new software developed for MAP.

5.4 Configuration Management (CM)

An electronic configuration management system will be implemented for MAP. It will provide World Wide Web access to a database system that is capable of problem tracking and software version control. All software, documentation, software tools and build procedures will be configured and regularly backed up on a software development file server. For details on the MAP CM system see the MIDEX/MAP Flight Software Configuration Management Plan.

5.5 Documentation

The MAP Flight Software Team will produce documentation throughout the software development lifecycle. Many of the documentation items are titled Software Specifications. A Software Specification is intended to be the single documentation source for a software subsystem. A Software Specification will include requirements, design, and user’s guide type information. Table 3.0 defines the planned documentation, responsible person and delivery dates for all documentation products.

Document
Person Responsible
Planned Completion

Date

Programmatic Documentation

Flight Software Development Plan
B. Savadkin
9/96

Flight Software Test Plan
M. Bartholomew
9/96

Flight Software CM Plan
M. Broida
10/96

ACS Documentation

ACS Software Requirements Document
M. Walters
1/97

ACE Software Requirements Document
M. Walters
1/97

ACE Software ICD
D. Leucht
1/97

ACS Software User’s Guide
M. Walters
3/98

C&DH Software Documentation

Generic ESN OS Software Specification
R. Whitley
11/96

Transponder RSN Software Specification
T. Miller
11/96

PSE RSN Software Specification
S. Gleason
12/96

Housekeeping RSN Software Specification
J. Marquart
9/97

Time Code Software Specification
A. Ferrer
10/96

Software Manager Software Specification
A. Ferrer
11/96

Command Ingest Software Specification
A. Cudmore
6/97

Telemetry Output Software Specification
T. Miller
11/96

1773 Bus Controller Software Specification
J. Firer
12/96

Health & Safety Software Specification
B. Savadkin
2/97

Memory Scrub Software Specification
S. Slegel
2/97

Checksum Software Specification
B. Savadkin
2/97

Data Storage Software Specification
S. Slegel
7/97

Telemetry & Statistics Monitor Software Specification
S. Slegel
9/97

1773 Bus Interface Control Document
J. Firer
2/97

Table 3.0
PAGE
18

_904138349.ppt

_904139935.ppt

_904285484.vsd

_897227933.ppt

